论文标题
使用概率的细胞自动机使用COVID-19大流行的计算模型
Computational model on COVID-19 Pandemic using Probabilistic Cellular Automata
论文作者
论文摘要
由SARS-COV2引起的冠状病毒病(Covid-19)已成为大流行。这种疾病具有高度感染力,可能致命,引起了全球公共卫生的关注。为了遏制Covid-19的传播,政府正在采用全国性的干预措施,例如锁定,遏制和隔离,对旅行的限制,取消社交活动和广泛的测试。为了了解这些措施以数据驱动方式控制流行病的影响,我们提出了基于概率的细胞自动机(PCA)修饰的SEIQR模型。与模型相关的过渡是由有关病毒的年代,症状,发病机理和传播率的数据驱动的。通过认为基于晶格的模型捕获了动态的特征以及现有的波动,我们对模型进行了严格的计算分析,以考虑到对人们施加的社会距离措施的空间动力学。考虑到与缓解策略相关的概率行为方面,我们研究了该模型考虑种群密度和测试效率等因素。使用该模型,我们关注不同国家的流行动力学数据的变异性,并指出这些对比观察结果背后的原因。据我们所知,这是使用PCA建模Covid-19建模的第一次尝试,这使我们能够为感染的空间和时间变化扩散,并了解不同感染参数的贡献。
Coronavirus disease (COVID-19) which is caused by SARS-COV2 has become a pandemic. This disease is highly infectious and potentially fatal, causing a global public health concern. To contain the spread of COVID-19, governments are adopting nationwide interventions, like lockdown, containment and quarantine, restrictions on travel, cancelling social events and extensive testing. To understand the effects of these measures on the control of the epidemic in a data-driven manner, we propose a probabilistic cellular automata (PCA) based modified SEIQR model. The transitions associated with the model is driven by data available on chronology, symptoms, pathogenesis and transmissivity of the virus. By arguing that the lattice-based model captures the features of the dynamics along with the existing fluctuations, we perform rigorous computational analyses of the model to take into account of the spatial dynamics of social distancing measures imposed on the people. Considering the probabilistic behavioural aspects associated with mitigation strategies, we study the model considering factors like population density and testing efficiency. Using the model, we focus on the variability of epidemic dynamics data for different countries and point out the reasons behind these contrasting observations. To the best of our knowledge, this is the first attempt to model COVID-19 spread using PCA that gives us both spatial and temporal variations of the infection spread with the insight about the contributions of different infection parameters.