论文标题

通用几何图

Universal Geometric Graphs

论文作者

Frati, Fabrizio, Hoffmann, Michael, Tóth, Csaba D.

论文摘要

我们介绍并研究了构建几何图的问题,这些几何图几乎没有顶点和边缘,并且对于平面图或某些平面图的一类是通用的;对于平面图的类$ \ Mathcal h $,如果它包含$ \ Mathcal H $中每个图的每个图形,则是平面图的$ \ Mathcal H $的几何图。 我们的主要结果是有一个带有$ n $顶点的几何图和$ o(n \ log n)$ edges,对于$ n $ vertex Forests来说是通用的;这扩展到了Chung和Graham的几何设置,它是一个众所周知的图理论结果,该结果指出,存在$ n $ vertex图,上面有$ o(n \ log n)$ edges,其中包含每$ n $ vertex Forest作为子图。即使允许超过$ n $的顶点,我们的$ O(n \ log n)$也无法提高边缘数量。 我们还证明,对于每个正整数$ h $,每个$ n $ vertex suvex几何图都具有通用的$ n $ vertex ofterplanar图,具有接近二次的边缘,即$ω__h(n^{2-1/h})$;这几乎与$ n $ vertex完整凸几何图给出的琐事$ o(n^2)$上限匹配。 最后,我们证明存在$ n $ -VERTEX凸面几何图,带有$ N $ VERTICES和$ O(n \ log n)$ edges,对于$ n $ vertex caterpillars而言是通用的。

We introduce and study the problem of constructing geometric graphs that have few vertices and edges and that are universal for planar graphs or for some sub-class of planar graphs; a geometric graph is \emph{universal} for a class $\mathcal H$ of planar graphs if it contains an embedding, i.e., a crossing-free drawing, of every graph in $\mathcal H$. Our main result is that there exists a geometric graph with $n$ vertices and $O(n \log n)$ edges that is universal for $n$-vertex forests; this extends to the geometric setting a well-known graph-theoretic result by Chung and Graham, which states that there exists an $n$-vertex graph with $O(n \log n)$ edges that contains every $n$-vertex forest as a subgraph. Our $O(n \log n)$ bound on the number of edges cannot be improved, even if more than $n$ vertices are allowed. We also prove that, for every positive integer $h$, every $n$-vertex convex geometric graph that is universal for $n$-vertex outerplanar graphs has a near-quadratic number of edges, namely $Ω_h(n^{2-1/h})$; this almost matches the trivial $O(n^2)$ upper bound given by the $n$-vertex complete convex geometric graph. Finally, we prove that there exists an $n$-vertex convex geometric graph with $n$ vertices and $O(n \log n)$ edges that is universal for $n$-vertex caterpillars.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源