论文标题
II型Hermite-Padé近似和新的线性独立标准的向量
Vectors of type II Hermite-Padé approximations and a new linear independence criterion
论文作者
论文摘要
我们提出了一个线性独立标准,并概述了它的应用。直到其最简单的情况,它旨在解决这个问题:给定三个实数,通常是分析功能的特殊值,如何证明$ \ mathbb {q} $ - 向量空间跨越了$ 1 $,这三个数字至少具有3个数字,至少在3个数字上,每当我们无法通过同时使用的近似值,即在同步的近似值中,均无法实现完整的lineartime。概括。应当回顾一下,I型和II型的近似值至少在原则上是相关的:当数值应用在于专门为两种类型的实际功能构造组成时,可以从另一个类型的实际功能结构中获得,一个是从另一个类型中获得的,如K.Mahler的著名论文中所述,可以从另一个类型中获得。这种关系反映在近似值的渐近行为之间的关系中,在$ \ mathbb {q} $的无限位置。相当有趣的是,这两个视图对$ \ mathbb {q} $的有限位置(即普rimes)的渐近行为分开了,这使得使用II类型II更方便用于特定目的。此外,有时我们知道II型近似与给定的一组函数,对于哪种I型近似值,不明确知道。我们的方法可以被视为标准线性独立标准的双重版本,该标准可以追溯到Siegel。
We propose a linear independence criterion, and outline an application of it. Down to its simplest case, it aims at solving this problem: given three real numbers, typically as special values of analytic functions, how to prove that the $\mathbb{Q}$-vector space spanned by $1$ and those three numbers has dimension at least 3, whenever we are unable to achieve full linear independence, by using simultaneous approximations, i.e. those usually arising from Hermite-Padé approximations of type II and their suitable generalizations. It should be recalled that approximations of type I and II are related, at least in principle: when the numerical application consists in specializing actual functional constructions of the two types, they can be obtained, one from the other, as explained in a well-known paper by K.Mahler [34]. That relation is reflected in a relation between the asymptotic behavior of the approximations at the infinite place of $\mathbb{Q}$. Rather interestingly, the two view-points split away regarding the asymptotic behaviors at finite places (i.e. primes) of $\mathbb{Q}$, and this makes the use of type II more convenient for particular purposes. In addition, sometimes we know type II approximations to a given set of functions, for which type I approximations are not known explicitly. Our approach can be regarded as a dual version of the standard linear independence criterion, which goes back to Siegel.