论文标题
使用深度学习来预测强度调制辐射疗法的最佳帕累托最佳剂量分布
Using Deep Learning to Predict Beam-Tunable Pareto Optimal Dose Distribution for Intensity Modulated Radiation Therapy
论文作者
论文摘要
我们建议开发深度学习模型,这些模型可以通过使用任何给定的束角以及患者的解剖结构来预测帕累托最佳剂量分布,作为训练深神经网络的输入。我们实施并比较了两个深度学习网络,这些网络通过两种不同的光束配置方式进行了预测。我们为70例前列腺癌患者制定了帕累托最佳计划。我们使用Fluence Map优化生成了500个IMRT计划,该计划为每个患者采样了帕累托表面,总计35,000个计划。我们研究并比较了两个不同的模型I和II模型。模型I直接将束角作为网络的第二个输入作为二进制向量。 Model II将梁角度转换为与PTV一致的梁剂量。我们的深度学习模型预测了与地面真实剂量分布相匹配的体素级剂量分布。 Quantitatively, Model I prediction error of 0.043 (confirmation), 0.043 (homogeneity), 0.327 (R50), 2.80% (D95), 3.90% (D98), 0.6% (D50), 1.10% (D2) was lower than that of Model II, which obtained 0.076 (confirmation), 0.058 (homogeneity), 0.626 (R50), 7.10% (D95),6.50%(D98),8.40%(D50),6.30%(D2)。使用我们模型的治疗计划者将能够使用深度学习来控制PTV和OAR权重之间的权衡,以及梁的数量和配置。我们的剂量预测方法为建立自动IMRT治疗计划提供了垫脚石。
We propose to develop deep learning models that can predict Pareto optimal dose distributions by using any given set of beam angles, along with patient anatomy, as input to train the deep neural networks. We implement and compare two deep learning networks that predict with two different beam configuration modalities. We generated Pareto optimal plans for 70 patients with prostate cancer. We used fluence map optimization to generate 500 IMRT plans that sampled the Pareto surface for each patient, for a total of 35,000 plans. We studied and compared two different models, Model I and Model II. Model I directly uses beam angles as a second input to the network as a binary vector. Model II converts the beam angles into beam doses that are conformal to the PTV. Our deep learning models predicted voxel-level dose distributions that precisely matched the ground truth dose distributions. Quantitatively, Model I prediction error of 0.043 (confirmation), 0.043 (homogeneity), 0.327 (R50), 2.80% (D95), 3.90% (D98), 0.6% (D50), 1.10% (D2) was lower than that of Model II, which obtained 0.076 (confirmation), 0.058 (homogeneity), 0.626 (R50), 7.10% (D95), 6.50% (D98), 8.40% (D50), 6.30% (D2). Treatment planners who use our models will be able to use deep learning to control the tradeoffs between the PTV and OAR weights, as well as the beam number and configurations in real time. Our dose prediction methods provide a stepping stone to building automatic IMRT treatment planning.