论文标题

操作员从相似性重归其化组和马格努斯扩张的演变

Operator evolution from the similarity renormalization group and the Magnus expansion

论文作者

Tropiano, A. J., Bogner, S. K., Furnstahl, R. J.

论文摘要

Magnus扩展是用高阶,内存密集型的普通微分方程求解器求解相似性重新归一化组(SRG)流程方程的有效替代方案。它为操作员进化提供的数值简化对于中级SRG计算特别有价值,尽管对于涉及入侵者状态的困难问题仍然存在挑战。在这里,我们在类似但更容易接近的情况下测试Magnus方法,这是由高性手性有效场理论(EFT)潜力引起的伪造结合状态的自由空间SRG处理,并具有很高的临界值。我们表明,Magnus的扩展通过了这些测试,然后将调查用作跳板,以解决操作员进化的各个方面,这些方面在核过程的规模和方案依赖性的背景下已更新了相关性。这些方面包括带有带和块对基因的发电机的SRG操作员流动,手性EFT Hamiltonians的通用性以及具有不同正则化方案的相关操作员以及由尺度分离引起的分解影响的影响。讨论了对短程相关物理学的影响以及核对核结构和反应的高分辨率治疗方法的可能性。

The Magnus expansion is an efficient alternative to solving similarity renormalization group (SRG) flow equations with high-order, memory-intensive ordinary differential equation solvers. The numerical simplifications it offers for operator evolution are particularly valuable for in-medium SRG calculations, though challenges remain for difficult problems involving intruder states. Here we test the Magnus approach in an analogous but more accessible situation, which is the free-space SRG treatment of the spurious bound-states arising from a leading-order chiral effective field theory (EFT) potential with very high cutoffs. We show that the Magnus expansion passes these tests and then use the investigations as a springboard to address various aspects of operator evolution that have renewed relevance in the context of the scale and scheme dependence of nuclear processes. These aspects include SRG operator flow with band- versus block-diagonal generators, universality for chiral EFT Hamiltonians and associated operators with different regularization schemes, and the impact of factorization arising from scale separation. Implications for short-range correlations physics and the possibilities for reconciling high- and low-resolution treatments of nuclear structure and reactions are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源