论文标题
存在不均匀广义的Navier-Stokes方程的弱解决方案
Existence of weak solutions for inhomogeneous generalized Navier-Stokes equations
论文作者
论文摘要
我们证明存在完全不均匀,固定的广义Navier-Stokes方程的弱解,用于剪切稀释的液体。我们的证明是基于假酮操作员和Lipschitz截断方法的理论,其应用被作为一般结果提出。我们的方法需要对数据有较小的和规律性的假设。我们表明,这在伪酮操作员的框架中是不可避免的。
We prove existence of weak solutions for the fully inhomogeneous, stationary generalized Navier-Stokes equations for shear-thinning fluids. Our proof is based on the theory of pseudomonotone operators and the Lipschitz truncation method, whose application is presented as a general result. Our approach requires a smallness and a regularity assumption on the data; we show that this is inevitable in the framework of pseudomonotone operators.