论文标题
用于探索大分子配体解离的工作流程:有效的随机加速分子动力学模拟和相互作用指纹分析配体轨迹
A Workflow for Exploring Ligand Dissociation from a Macromolecule: Efficient Random Acceleration Molecular Dynamics Simulation and Interaction Fingerprints Analysis of Ligand Trajectories
论文作者
论文摘要
配体与蛋白质和其他生物乳清分子的分离发生在各个范围内。对于大多数药物相关的抑制剂,这些时间尺度远远超出了通过常规分子动力学(MD)模拟访问的时间尺度。因此,要探索配体出口机理和计算解离速率,有必要增强配体解开的采样。随机加速MD(RAMD)是一种简单的方法,可以增强大分子结合位点的配体出口,该方法可以探索配体出口路线,而无需事先了解反应坐标。此外,托拉姆德程序可用于计算配体的相对停留时间。当与蛋白质 - 配体相互作用指纹(IFP)的机器学习分析结合使用时,可以鉴定影响配体解开动力学的分子特征。在这里,我们描述了RAMD在Gromacs 2020中的实施,该实施可显着改善计算性能,并扩展到大分子系统。为了对RAMD结果进行自动分析,我们开发了MD-IFP,这是一组用于沿着轨迹的IFP生成的工具,并用于探索配体动力学。我们证明,通过将它们映射到IFP空间上的配体解离轨迹的分析可以使配体解离路线和亚稳态状态的表征。 RAMD和MD-IFP的组合实现提供了一种计算高效且可自由的工作流程,可以在合理的计算时间内应用于数百种化合物,并有助于在药物设计中使用TaURAMD。
The dissociation of ligands from proteins and other biomacromolecules occurs over a wide range of timescales. For most pharmaceutically relevant inhibitors, these timescales are far beyond those that are accessible by conventional molecular dynamics (MD) simulation. Consequently, to explore ligand egress mechanisms and compute dissociation rates, it is necessary to enhance the sampling of ligand unbinding. Random Acceleration MD (RAMD) is a simple method to enhance ligand egress from a macromolecular binding site, which enables the exploration of ligand egress routes without prior knowledge of the reaction coordinates. Furthermore, the tauRAMD procedure can be used to compute the relative residence times of ligands. When combined with a machine-learning analysis of protein-ligand interaction fingerprints (IFPs), molecular features that affect ligand unbinding kinetics can be identified. Here, we describe the implementation of RAMD in GROMACS 2020, which provides significantly improved computational performance, with scaling to large molecular systems. For the automated analysis of RAMD results, we developed MD-IFP, a set of tools for the generation of IFPs along unbinding trajectories and for their use in the exploration of ligand dynamics. We demonstrate that the analysis of ligand dissociation trajectories by mapping them onto the IFP space enables the characterization of ligand dissociation routes and metastable states. The combined implementation of RAMD and MD-IFP provides a computationally efficient and freely available workflow that can be applied to hundreds of compounds in a reasonable computational time and will facilitate the use of tauRAMD in drug design.