论文标题
莫纳什大学,UEA,UCR时间序列外部回归档案
Monash University, UEA, UCR Time Series Extrinsic Regression Archive
论文作者
论文摘要
在过去的十年中,时间序列研究收集了很多兴趣,尤其是时间序列分类(TSC)和时间序列预测(TSF)。 TSC的研究大大受益于加利福尼亚大学河滨大学和东英吉利大学(UCR/UEA)时间序列档案。另一方面,时间序列预测的进步依赖于时间序列预测比赛,例如Makridakis比赛,NN3和NN5神经网络竞赛以及一些Kaggle比赛。每年,成千上万的论文提出针对TSC和TSF的新算法的论文都使用了这些基准测试档案。这些算法是针对这些特定问题而设计的,但对于诸如使用光杀解功能图(PPG)和加速度计数据的人的心率等任务可能没有用。我们将此问题称为时间序列外部回归(TSER),在该回归中,我们对单变量或多元时间序列的一种更通用的方法来预测单个连续价值的方法。该预测可以来自同一时间序列,也可以与预测器时间序列直接相关,并且不一定需要是未来值,也不是在很大程度上取决于最近的值。据我们所知,对TSER的研究在时间序列研究社区中受到了较少的关注,并且没有针对一般时间序列外部回归问题开发的模型。大多数模型都是为特定问题开发的。因此,我们旨在通过引入第一个TSER基准测试档案来激励和支持TSER的研究。该存档包含来自不同域的19个数据集,具有不同数量的维度,不等长度和缺失值。在本文中,我们在此存档中介绍了数据集,并对现有模型进行了初步基准。
Time series research has gathered lots of interests in the last decade, especially for Time Series Classification (TSC) and Time Series Forecasting (TSF). Research in TSC has greatly benefited from the University of California Riverside and University of East Anglia (UCR/UEA) Time Series Archives. On the other hand, the advancement in Time Series Forecasting relies on time series forecasting competitions such as the Makridakis competitions, NN3 and NN5 Neural Network competitions, and a few Kaggle competitions. Each year, thousands of papers proposing new algorithms for TSC and TSF have utilized these benchmarking archives. These algorithms are designed for these specific problems, but may not be useful for tasks such as predicting the heart rate of a person using photoplethysmogram (PPG) and accelerometer data. We refer to this problem as Time Series Extrinsic Regression (TSER), where we are interested in a more general methodology of predicting a single continuous value, from univariate or multivariate time series. This prediction can be from the same time series or not directly related to the predictor time series and does not necessarily need to be a future value or depend heavily on recent values. To the best of our knowledge, research into TSER has received much less attention in the time series research community and there are no models developed for general time series extrinsic regression problems. Most models are developed for a specific problem. Therefore, we aim to motivate and support the research into TSER by introducing the first TSER benchmarking archive. This archive contains 19 datasets from different domains, with varying number of dimensions, unequal length dimensions, and missing values. In this paper, we introduce the datasets in this archive and did an initial benchmark on existing models.