论文标题
在$ 2 $ - 尼尔替代乘以谎言的乘数
On $2$-Nilpotent Multiplier of Lie Superalgebras
论文作者
论文摘要
在本文中,我们定义了有限维度suepralgebra的$ c $ nilpotent乘数。我们表征了有限尺寸的nilpotent lie superalgebras的$ 2 $ nilpotent乘数的结构,其衍生的子代数最多具有尺寸。然后,我们在任何有限的尺寸nilpotent lie superalgebra的$ 2 $ nilpotent乘数上给出了上限。此外,我们将特殊的$ 2 $可容纳性以及奇特的海森伯格谎言超级级别的超级甲壳虫和Abelian Like Superalgebras置于了$ 2 $。
In this article we define the $c$-nilpotent multiplier of a finite dimensional Lie suepralgebra. We characterize the structure of $2$-nilpotent multiplier of finite dimensional nilpotent Lie superalgebras whose derived subalgebras have dimension at most one. Then we give an upper bound on the dimension of $2$-nilpotent multiplier of any finite dimensional nilpotent Lie superalgebra. Moreover, we discuses the $2$-capability of special as well as odd Heisenberg Lie superalgebras and abelian Lie superalgebras.