论文标题
用柔性无人机反射表面优化无线继电器
Optimization of Wireless Relaying With Flexible UAV-Borne Reflecting Surfaces
论文作者
论文摘要
本文提出了一个理论框架,以分析综合无人驾驶汽车(UAV)智能反射表面(IRS)中继系统的性能,在该系统中,IRS提供了额外的自由度,加上了全面无人机的灵活部署,以增强地面节点之间的通信。我们的框架考虑了三种不同的传输模式:{\ bf(i)}仅无UAV模式,{\ bf(ii)}仅IRS-仅IRS模式,{\ bf(iii)}集成的无人机模式以实现光谱和能量效率相关。对于所提出的模式,我们为封闭形式中的端到端中断概率,千古效率和能源效率(EE)提供了精确和近似的表达式。 我们使用派生的表达式来优化关键系统参数,例如UAV高度以及考虑不同模式的IRS上的元素数量。我们以分数编程的形式(例如,单比,多比率或比率最大化最大化)制定问题,并使用二次变换来设计最佳算法。此外,我们得出一个分析标准,可最佳地选择不同的传输模式,以最大程度地提高给定数量的IRS元素的ERGODIC容量和EE。数值结果通过蒙特卡罗模拟验证了派生的表达式以及通过详尽搜索获得的解决方案所提出的优化算法。洞察与不同的通信模式,最佳IRS元素和最佳无人机高度有关。
This paper presents a theoretical framework to analyze the performance of integrated unmanned aerial vehicle (UAV)-intelligent reflecting surface (IRS) relaying system in which IRS provides an additional degree of freedom combined with the flexible deployment of full-duplex UAV to enhance communication between ground nodes. Our framework considers three different transmission modes: {\bf (i)} UAV-only mode, {\bf (ii)} IRS-only mode, and {\bf (iii)} integrated UAV-IRS mode to achieve spectral and energy-efficient relaying. For the proposed modes, we provide exact and approximate expressions for the end-to-end outage probability, ergodic capacity, and energy efficiency (EE) in closed-form. We use the derived expressions to optimize key system parameters such as the UAV altitude and the number of elements on the IRS considering different modes. We formulate the problems in the form of fractional programming (e.g. single ratio, sum of multiple ratios or maximization-minimization of ratios) and devise optimal algorithms using quadratic transformations. Furthermore, we derive an analytic criterion to optimally select different transmission modes to maximize ergodic capacity and EE for a given number of IRS elements. Numerical results validate the derived expressions with Monte-Carlo simulations and the proposed optimization algorithms with the solutions obtained through exhaustive search. Insights are drawn related to the different communication modes, optimal number of IRS elements, and optimal UAV height.