论文标题
整数量子大厅效应的纠缠熵在两个和更高的维度
Entanglement entropy for integer quantum Hall effect in two and higher dimensions
论文作者
论文摘要
我们分析了真实空间中的纠缠熵,以使$ {\ mathbb {cp}}}^k $(任何偶数尺寸)的较高维整数量子大厅效应(任何偶数)。在$ν= 1 $的情况下,我们执行一个半经典计算,该计算使熵与相位空间区域成正比。从某种意义上说,对于任何维度和任何背景,Abelian或Nonabelian都是相同的,这表现出了一定的普遍性。我们还指出了两点相关器的本征函数的配置文件中的一些不同特征,这些特征强调了$ν= 1 $和更高的Landau级别之间熵值的差异。
We analyze the entanglement entropy, in real space, for the higher dimensional integer quantum Hall effect on ${\mathbb {CP}}^k$ (any even dimension) for abelian and nonabelian magnetic background fields. In the case of $ν=1$ we perform a semiclassical calculation which gives the entropy as proportional to the phase-space area. This exhibits a certain universality in the sense that the proportionality constant is the same for any dimension and for any background, abelian or nonabelian. We also point out some distinct features in the profiles of the eigenfunctions of the two-point correlator that underline the difference in the value of entropies between $ν=1$ and higher Landau levels.