论文标题
高效的第二次谐波生成薄膜的薄膜锂niobate纳米在连续体的结合状态附近
Highly Efficient Second Harmonic Generation of Thin Film Lithium Niobate Nanograting near Bound States in the Continuum
论文作者
论文摘要
量子力学的概念是连续体(BICS)中的结合状态,是无处不在的物理现象,其中波浪将完全锁定在物理系统中而不会泄漏。光学中的这种物理现象将为光学模式限制提供一个平台,以增强非线性光学的局部现场增强。在这里,我们利用一个光学系统,该光学系统由尼奥宾特薄膜锂(Linbo3)材料的不对称纳米指导和波导组成,以增强BIC附近的第二次谐波响应。通过打破光栅周期性的对称性,我们实现了限制在波导内部的强烈局部场(最多25倍)归一化为入射场(非对称因子为0.2),从而使非线性材料中的强光相互作用很强。从数值模拟中,我们从理论上证明,与未签名的LINBO3膜相比,这种光学系统可以大大增强大约104的第二次谐波强度增强,而转换效率达到1.53e-5,对于1.53e-5,对于1.33 GW/(SUQARE CM)而言,对于不对称因子而言,不对称因子= 0.2。令人惊讶的是,我们可以预测,当光学系统非常接近BIC时,对于非对称因子而言,第二次谐波转换效率的巨大增强将超过8.13e-5。我们认为,这种光学系统也可以访问内部的本地场,以促进薄膜烯甲酸酯在集成非线性光学元素领域的应用。
Bound states in the continuum (BICs), a concept from quantum mechanics, are ubiquitous physical phenomena where waves will be completely locked inside physical systems without energy leaky. Such a physical phenomenon in optics will provide a platform for optical mode confinement to strengthen local field enhancement in nonlinear optics. Here we utilize an optical system consisting of asymmetric nanogratings and waveguide of thin film lithium niobate (LiNbO3) material to enhance second harmonic response near BICs. By breaking the symmetry of grating periodicity, we realize strong local field confined inside waveguide up to 25 times normalized to incident field (with dissymmetric factor of 0.2), allowing strong light-matter interaction in nonlinear material. From the numerical simulation, we theoretically demonstrate that such an optical system can greatly enhance second harmonic intensity enhancement of about 104 compared with undersigned LiNbO3 film and conversion efficiency reaching 1.53e-5 for dissymmetric factor=0.2 under illumination of 1.33 GW/(suqare cm). Surprisingly, we can predict that a giant enhancement of second harmonic conversion efficiency will exceed 8.13e-5 for dissymmetric factor=0.1 when the optical system is extremely close to BICs. We believe that such an optical system to trap local field inside is also accessible to promote the application of thin film lithium niobate in the field of integrated nonlinear optics.