论文标题
深层图像翻译,用于增强模拟超声图像
Deep Image Translation for Enhancing Simulated Ultrasound Images
论文作者
论文摘要
基于射线追踪的超声模拟可以使高度逼真的图像合成。它可以为培训超声波提供的互动环境作为一种教育工具。但是,由于计算需求较高,图像质量和互动性之间存在权衡,这可能会导致以交互速率以次优的结果。在这项工作中,我们介绍了一种基于对抗性训练的深度学习方法,该方法通过持续的计算时间来改善模拟图像的质量来减轻这种权衡。图像到图像翻译框架用于将低质量的图像转换为高质量版本。为了结合可能在低质量图像中丢失的解剖信息,我们还为图像翻译提供了分割图。此外,我们建议利用声学衰减图的信息更好地保留声阴影和定向伪像,这是超声图像解释的宝贵特征。所提出的方法在FréchetInception距离中提高了7.2%,基于斑块的Kullback-Leibler Divergence的提高了8.9%。
Ultrasound simulation based on ray tracing enables the synthesis of highly realistic images. It can provide an interactive environment for training sonographers as an educational tool. However, due to high computational demand, there is a trade-off between image quality and interactivity, potentially leading to sub-optimal results at interactive rates. In this work we introduce a deep learning approach based on adversarial training that mitigates this trade-off by improving the quality of simulated images with constant computation time. An image-to-image translation framework is utilized to translate low quality images into high quality versions. To incorporate anatomical information potentially lost in low quality images, we additionally provide segmentation maps to image translation. Furthermore, we propose to leverage information from acoustic attenuation maps to better preserve acoustic shadows and directional artifacts, an invaluable feature for ultrasound image interpretation. The proposed method yields an improvement of 7.2% in Fréchet Inception Distance and 8.9% in patch-based Kullback-Leibler divergence.