论文标题
傅立叶功能让网络学习低维域中的高频功能
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
论文作者
论文摘要
我们表明,通过简单的傅立叶功能映射传递输入点使多层感知器(MLP)能够在低维问题域中学习高频功能。这些结果阐明了计算机视觉和图形的最新进展,这些进步通过使用MLP代表复杂的3D对象和场景来实现最新结果。使用神经切线内核(NTK)文献中的工具,我们表明标准MLP在理论和实践中都无法学习高频。为了克服这种频谱偏置,我们使用傅立叶功能映射将有效的NTK转换为具有可调带宽的固定核。我们建议一种选择特定问题的傅立叶功能的方法,该功能极大地提高了与计算机视觉和图形社区相关的低维回归任务的MLP的性能。
We show that passing input points through a simple Fourier feature mapping enables a multilayer perceptron (MLP) to learn high-frequency functions in low-dimensional problem domains. These results shed light on recent advances in computer vision and graphics that achieve state-of-the-art results by using MLPs to represent complex 3D objects and scenes. Using tools from the neural tangent kernel (NTK) literature, we show that a standard MLP fails to learn high frequencies both in theory and in practice. To overcome this spectral bias, we use a Fourier feature mapping to transform the effective NTK into a stationary kernel with a tunable bandwidth. We suggest an approach for selecting problem-specific Fourier features that greatly improves the performance of MLPs for low-dimensional regression tasks relevant to the computer vision and graphics communities.