论文标题

量子甲骨文的规范结构

Canonical Construction of Quantum Oracles

论文作者

Gilliam, Austin, Pistoia, Marco, Gonciulea, Constantin

论文摘要

选择一组基础状态是量子计算中的常见任务,以增加和/或评估其概率。这类似于设计经典数据库查询中的子句的位置。即使人们可以找到实现这一目标的启发式方法,但希望自动化该过程。一种常见但效率低下的自动化方法是在电路设计时对所有状态进行经典评估使用Oracles。在本文中,我们提出了一种新颖的规范方式,可以从代数表达式(尤其是Ising模型)中产生量子甲骨文,该方法将一组选定状态映射到相同的值,并与与该特定值匹配的简单甲骨文绘制。我们还介绍了标准化此类甲骨文的Grover Iteraties的一般形式。然后,我们将这种新方法应用于特定情况的伊斯丁汉密尔顿人,该方法对零和子集问题进行了建模和斐波那契数的计算。此外,本文介绍了基于量子量64的“霍尼韦尔”计算机的新型Honeywell计算机获得的实验结果。

Selecting a set of basis states is a common task in quantum computing, in order to increase and/or evaluate their probabilities. This is similar to designing WHERE clauses in classical database queries. Even though one can find heuristic methods to achieve this, it is desirable to automate the process. A common, but inefficient automation approach is to use oracles with classical evaluation of all the states at circuit design time. In this paper, we present a novel, canonical way to produce a quantum oracle from an algebraic expression (in particular, an Ising model), that maps a set of selected states to the same value, coupled with a simple oracle that matches that particular value. We also introduce a general form of the Grover iterate that standardizes this type of oracle. We then apply this new methodology to particular cases of Ising Hamiltonians that model the zero-sum subset problem and the computation of Fibonacci numbers. In addition, this paper presents experimental results obtained on real quantum hardware, the new Honeywell computer based on trapped-ion technology with quantum volume 64.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源