论文标题

SIR模型假设Covid-19在不同社区中的传播

A SIR model assumption for the spread of COVID-19 in different communities

论文作者

Cooper, Ian, Mondal, Argha, Antonopoulos, Chris G.

论文摘要

在本文中,我们研究了由于新型Covid-19疾病的传播,建模方法对大流行的有效性,并开发了一种易感性感染的被感染的(SIR)模型,该模型提供了一个理论框架来研究其在社区中的传播。在这里,该模型基于众所周知的易感感染的(SIR)模型,其差异是总体未定义或保持恒定本身,并且易感个体的数量并未单调下降。相反,正如我们在此显示的那样,它可以在激增时增加!特别是,我们研究了不同人群的时间演变,并监测了疾病在美国和德克萨斯州代表的各个社区中传播的不同重要参数。 SIR模型可以为我们提供有关病毒在社区中传播的见解和预测,仅记录的数据就不能。我们的工作表明了我们在这里提出的SIR模型对Covid-19的传播建模的重要性,因为它可以通过提供有价值的预测来帮助评估疾病的影响。我们的分析考虑了2020年1月至6月的数据,该时期包含了实施严格和控制措施之前和期间的数据。我们提出了有关与COVID-19的传播以及易感,感染和删除人群的数量有关的各种参数的预测,直到2020年9月。通过将记录的数据与我们的建模方法的数据进行比较,我们可以推断出Covid-19的传播可以在所有社区中受到控制,如果在所有社区中都可以在所有社区中受到控制,如果适当的限制和强有力的疾病可以控制感染率,则可以在疾病中实现了差异。

In this paper, we study the effectiveness of the modelling approach on the pandemic due to the spreading of the novel COVID-19 disease and develop a susceptible-infected-removed (SIR) model that provides a theoretical framework to investigate its spread within a community. Here, the model is based upon the well-known susceptible-infected-removed (SIR) model with the difference that a total population is not defined or kept constant per se and the number of susceptible individuals does not decline monotonically. To the contrary, as we show herein, it can be increased in surge periods! In particular, we investigate the time evolution of different populations and monitor diverse significant parameters for the spread of the disease in various communities, represented by countries and the state of Texas in the USA. The SIR model can provide us with insights and predictions of the spread of the virus in communities that the recorded data alone cannot. Our work shows the importance of modelling the spread of COVID-19 by the SIR model that we propose here, as it can help to assess the impact of the disease by offering valuable predictions. Our analysis takes into account data from January to June, 2020, the period that contains the data before and during the implementation of strict and control measures. We propose predictions on various parameters related to the spread of COVID-19 and on the number of susceptible, infected and removed populations until September 2020. By comparing the recorded data with the data from our modelling approaches, we deduce that the spread of COVID-19 can be under control in all communities considered, if proper restrictions and strong policies are implemented to control the infection rates early from the spread of the disease.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源