论文标题
在多源协变量偏移下有效的高参数优化
Efficient Hyperparameter Optimization under Multi-Source Covariate Shift
论文作者
论文摘要
监督机器学习中的一个典型假设是,火车(源)和测试(目标)数据集完全遵循完全相同的分布。但是,这种假设在不确定的现实应用程序中经常违反,这激发了协变量转移下的学习研究。在这种情况下,天真地使用自适应超参数优化方法,例如贝叶斯优化,因为它无法解决不同数据集之间的分布偏移,因此无法正常工作。在这项工作中,我们考虑了多源协变量转移下的一个新型的超参数优化问题,该问题是在目标任务中仅使用未标记的数据并在多个源任务中标记的数据,以找到目标任务的最佳超参数。为了对目标任务进行有效的超参数优化,必须仅使用可用信息估算目标目标。为此,我们构建了降低的估计值,该估计值无公开地近似具有理想方差属性的目标目标。在拟议的估计器的基础上,我们提供了一个通用且可拖动的超参数优化程序,该过程最好在我们的设置中使用无需重新保证。实验表明,所提出的框架扩大了自动超参数优化的应用。
A typical assumption in supervised machine learning is that the train (source) and test (target) datasets follow completely the same distribution. This assumption is, however, often violated in uncertain real-world applications, which motivates the study of learning under covariate shift. In this setting, the naive use of adaptive hyperparameter optimization methods such as Bayesian optimization does not work as desired since it does not address the distributional shift among different datasets. In this work, we consider a novel hyperparameter optimization problem under the multi-source covariate shift whose goal is to find the optimal hyperparameters for a target task of interest using only unlabeled data in a target task and labeled data in multiple source tasks. To conduct efficient hyperparameter optimization for the target task, it is essential to estimate the target objective using only the available information. To this end, we construct the variance reduced estimator that unbiasedly approximates the target objective with a desirable variance property. Building on the proposed estimator, we provide a general and tractable hyperparameter optimization procedure, which works preferably in our setting with a no-regret guarantee. The experiments demonstrate that the proposed framework broadens the applications of automated hyperparameter optimization.