论文标题
具有学识渊博的潜在结构的变异自动编码器
Variational Autoencoder with Learned Latent Structure
论文作者
论文摘要
歧管假设指出,高维数据可以建模为位于或附近的低维非线性歧管上。各种自动编码器(VAE)通过学习从低维潜在向量到高维数据的映射来近似这种歧管,同时通过使用指定的先验分布来鼓励潜在空间中的全局结构。当此先验与真实数据歧管的结构不匹配时,它可能导致数据的准确模型。为了解决此不匹配,我们介绍了具有学识渊博的潜在结构(VAELLS)的变异自动编码器,该结构将可学习的歧管模型纳入VAE的潜在空间。这使我们能够从数据中学习非线性歧管结构,并使用该结构在潜在空间中定义先验。潜在歧管模型的集成不仅确保了我们的先验与数据匹配,还允许我们定义潜在空间中的生成转换路径,并用每个类示例的转换来描述类歧管。我们在具有已知潜在结构的示例中验证了模型,并在现实世界数据集中证明了其功能。
The manifold hypothesis states that high-dimensional data can be modeled as lying on or near a low-dimensional, nonlinear manifold. Variational Autoencoders (VAEs) approximate this manifold by learning mappings from low-dimensional latent vectors to high-dimensional data while encouraging a global structure in the latent space through the use of a specified prior distribution. When this prior does not match the structure of the true data manifold, it can lead to a less accurate model of the data. To resolve this mismatch, we introduce the Variational Autoencoder with Learned Latent Structure (VAELLS) which incorporates a learnable manifold model into the latent space of a VAE. This enables us to learn the nonlinear manifold structure from the data and use that structure to define a prior in the latent space. The integration of a latent manifold model not only ensures that our prior is well-matched to the data, but also allows us to define generative transformation paths in the latent space and describe class manifolds with transformations stemming from examples of each class. We validate our model on examples with known latent structure and also demonstrate its capabilities on a real-world dataset.