论文标题

CHESTX-DET10:胸部X射线数据集检测到胸部异常

ChestX-Det10: Chest X-ray Dataset on Detection of Thoracic Abnormalities

论文作者

Liu, Jingyu, Lian, Jie, Yu, Yizhou

论文摘要

胸部疾病或异常的实例水平检测对于胸部X射线图像自动诊断至关重要。大多数现有关于胸部X射线的作品都集中在疾病分类和弱监督定位上。为了推动胸部X射线疾病分类和定位的研究。我们提供了一种称为ChestX-Det10的新基准,包括10类疾病/异常$ \ sim $ 3,500图像的盒子级注释。注释位于https://github.com/deepwise-ailab/chestx-det10-dataset。

Instance level detection of thoracic diseases or abnormalities are crucial for automatic diagnosis in chest X-ray images. Most existing works on chest X-rays focus on disease classification and weakly supervised localization. In order to push forward the research on disease classification and localization on chest X-rays. We provide a new benchmark called ChestX-Det10, including box-level annotations of 10 categories of disease/abnormality of $\sim$ 3,500 images. The annotations are located at https://github.com/Deepwise-AILab/ChestX-Det10-Dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源