论文标题
使用图VAE的神经结构优化
Neural Architecture Optimization with Graph VAE
论文作者
论文摘要
由于它们在连续空间上的高计算效率,梯度优化方法在神经体系结构搜索(NAS)域中表现出巨大的潜力。从离散空间到潜在空间的网络表示形式的映射是发现新型体系结构的关键,但是,现有的基于梯度的方法无法完全表征网络。在本文中,我们提出了一种有效的NAS方法,以在连续空间中优化网络体系结构,在该空间中,潜在空间是建立在变异自动编码器(VAE)和图神经网络(GNN)上的。该框架共同学习了四个组成部分:编码器,性能预测指标,复杂性预测指标和解码器以端到端方式。编码器和解码器属于vae,在连续表示和网络体系结构之间绘制架构。预测因子是两个回归模型,分别符合性能和计算复杂性。这些预测因素确保发现的架构表征出色的性能和高计算效率。广泛的实验证明了我们的框架不仅会产生适当的连续表示,而且还发现了强大的神经体系结构。
Due to their high computational efficiency on a continuous space, gradient optimization methods have shown great potential in the neural architecture search (NAS) domain. The mapping of network representation from the discrete space to a latent space is the key to discovering novel architectures, however, existing gradient-based methods fail to fully characterize the networks. In this paper, we propose an efficient NAS approach to optimize network architectures in a continuous space, where the latent space is built upon variational autoencoder (VAE) and graph neural networks (GNN). The framework jointly learns four components: the encoder, the performance predictor, the complexity predictor and the decoder in an end-to-end manner. The encoder and the decoder belong to a graph VAE, mapping architectures between continuous representations and network architectures. The predictors are two regression models, fitting the performance and computational complexity, respectively. Those predictors ensure the discovered architectures characterize both excellent performance and high computational efficiency. Extensive experiments demonstrate our framework not only generates appropriate continuous representations but also discovers powerful neural architectures.