论文标题

自动语音识别基准的气流通信

Automatic Speech Recognition Benchmark for Air-Traffic Communications

论文作者

Zuluaga-Gomez, Juan, Motlicek, Petr, Zhan, Qingran, Vesely, Karel, Braun, Rudolf

论文摘要

在过去的十年中,自动语音识别(ASR)的进步开放了基于语音的自动化的新领域,例如空中交通控制(ATC)环境。当前,语音通信和数据链接通信是飞行员和空中交通控制器(ATCO)之间接触的唯一联系方式,该方法是前者使用最广泛的方法,后者是海洋信息强制性的非说话方法,并且在某些家庭问题上有限。 ATCO环境上的ASR系统继承了由于非英语扬声器,驾驶舱噪音,依赖扬声器依赖的偏见以及用于培训的小型内域数据库而引起的复杂性。特此,我们介绍了Cleansky EC-H2020 ATCO2,该项目旨在开发一个基于ASR的平台,以从空中空间收集,组织和自动组织和自动预处理ATCO Speech-Data。本文传达了在超过170个小时的ATCO Speech-Data中训练的几种最先进的ASR模型的探索性基准。我们证明,由于数据量的量,由于说话者的口音而引起的跨元素缺陷,使系统对ATC环境的可行性变得可行。开发的ASR系统在四个数据库中达到平均单词错误率(WER)为7.75%。当训练具有字节对编码的TDNNF系统时,在一个测试集上,在一个测试集上的相对相对提高了35%。

Advances in Automatic Speech Recognition (ASR) over the last decade opened new areas of speech-based automation such as in Air-Traffic Control (ATC) environment. Currently, voice communication and data links communications are the only way of contact between pilots and Air-Traffic Controllers (ATCo), where the former is the most widely used and the latter is a non-spoken method mandatory for oceanic messages and limited for some domestic issues. ASR systems on ATCo environments inherit increasing complexity due to accents from non-English speakers, cockpit noise, speaker-dependent biases, and small in-domain ATC databases for training. Hereby, we introduce CleanSky EC-H2020 ATCO2, a project that aims to develop an ASR-based platform to collect, organize and automatically pre-process ATCo speech-data from air space. This paper conveys an exploratory benchmark of several state-of-the-art ASR models trained on more than 170 hours of ATCo speech-data. We demonstrate that the cross-accent flaws due to speakers' accents are minimized due to the amount of data, making the system feasible for ATC environments. The developed ASR system achieves an averaged word error rate (WER) of 7.75% across four databases. An additional 35% relative improvement in WER is achieved on one test set when training a TDNNF system with byte-pair encoding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源