论文标题

通过变异自动编码器探索无序系统中的订单参数和动态过程

Exploring order parameters and dynamic processes in disordered systems via variational autoencoders

论文作者

Kalinin, Sergei V., Dyck, Ondrej, Jesse, Stephen, Ziatdinov, Maxim

论文摘要

我们建议并实施一种方法,以对正在进行大规模结构变化的系统的自下而上描述以及动态原子化成像数据的化学转化,其中只有部分或不确定原子位置的数据可用。这种方法是基于两个概念的协同作用,即物理描述符的简约以及非晶状体固体的一般旋转不变性,并使用用于旋转不变的自动编码器的旋转不变扩展来实施,该差异化自动编码器应用于语义上的原子分解数据,以最大程度地降低了该系统的最大程度的代表性,该系统的最大程度降低了原始信息的最大程度。这种方法使我们能够探索硅掺杂的石墨烯系统中电子束诱导的过程的动态演化,但也可以应用于更广泛的原子尺度和介质现象范围,以引入自下而上的订单参数,并随时间和对外部刺激的时间探索它们的动力学。

We suggest and implement an approach for the bottom-up description of systems undergoing large-scale structural changes and chemical transformations from dynamic atomically resolved imaging data, where only partial or uncertain data on atomic positions are available. This approach is predicated on the synergy of two concepts, the parsimony of physical descriptors and general rotational invariance of non-crystalline solids, and is implemented using a rotationally-invariant extension of the variational autoencoder applied to semantically segmented atom-resolved data seeking the most effective reduced representation for the system that still contains the maximum amount of original information. This approach allowed us to explore the dynamic evolution of electron beam-induced processes in a silicon-doped graphene system, but it can be also applied for a much broader range of atomic-scale and mesoscopic phenomena to introduce the bottom-up order parameters and explore their dynamics with time and in response to external stimuli.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源