论文标题
通过潜在空间插值在生成模型中无监督的元学习
Unsupervised Meta-Learning through Latent-Space Interpolation in Generative Models
论文作者
论文摘要
无监督的元学习方法取决于使用随机选择,聚类和/或增强等技术创建的合成元任务。不幸的是,聚类和增强是依赖域的,因此它们需要手动调整或昂贵的学习。在这项工作中,我们描述了一种使用生成模型生成元任务的方法。关键组件是从潜在空间进行采样的新方法,该方法将分组为构成元任务的训练和验证数据的对象生成对象。我们发现,所提出的方法,潜在的空间插值无监督的元学习(Lasium),表现优于或与当前无监督的学习基准在最广泛使用的基准数据集上的几个射击分类任务上具有竞争力。此外,该方法有望适用,而无需与以前的方法相比,无需在更广泛的范围内进行手动调整。
Unsupervised meta-learning approaches rely on synthetic meta-tasks that are created using techniques such as random selection, clustering and/or augmentation. Unfortunately, clustering and augmentation are domain-dependent, and thus they require either manual tweaking or expensive learning. In this work, we describe an approach that generates meta-tasks using generative models. A critical component is a novel approach of sampling from the latent space that generates objects grouped into synthetic classes forming the training and validation data of a meta-task. We find that the proposed approach, LAtent Space Interpolation Unsupervised Meta-learning (LASIUM), outperforms or is competitive with current unsupervised learning baselines on few-shot classification tasks on the most widely used benchmark datasets. In addition, the approach promises to be applicable without manual tweaking over a wider range of domains than previous approaches.