论文标题

将来自多个大脑区域的神经人群数据的共享组成部分分析

Demixed shared component analysis of neural population data from multiple brain areas

论文作者

Takagi, Yu, Kennerley, Steven W., Hirayama, Jun-ichiro, Hunt, Laurence T.

论文摘要

神经科学数据获取的最新进展允许在多个大脑区域中同时记录大量神经元,而受试者执行复杂的认知任务。解释这些数据要求我们索引如何在大脑区域共享与任务相关的信息,但这通常与单个神经元级别的不同任务参数的混合在一起。在这里,受到为单个大脑区域开发的方法的启发,我们引入了一种新技术,用于将多个大脑区域的变量解散,称为解散的共享组件分析(DSCA)。 DSCA将人口活动分解为一些组件,因此共享组件捕获了整个大脑区域的最大共享信息,同时也取决于相关的任务参数。这产生了可解释的组件,这些组件表达了不同大脑区域之间以及跨时间共享此信息之间共享哪些变量。为了说明我们的方法,我们重新分析了在啮齿动物和猕猴决策任务中记录的两个数据集。我们发现,DSCA提供了有关这些数据集不同大脑区域之间共享计算的新见解,这与决策形成的几个不同方面有关。

Recent advances in neuroscience data acquisition allow for the simultaneous recording of large populations of neurons across multiple brain areas while subjects perform complex cognitive tasks. Interpreting these data requires us to index how task-relevant information is shared across brain regions, but this is often confounded by the mixing of different task parameters at the single neuron level. Here, inspired by a method developed for a single brain area, we introduce a new technique for demixing variables across multiple brain areas, called demixed shared component analysis (dSCA). dSCA decomposes population activity into a few components, such that the shared components capture the maximum amount of shared information across brain regions while also depending on relevant task parameters. This yields interpretable components that express which variables are shared between different brain regions and when this information is shared across time. To illustrate our method, we reanalyze two datasets recorded during decision-making tasks in rodents and macaques. We find that dSCA provides new insights into the shared computation between different brain areas in these datasets, relating to several different aspects of decision formation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源