论文标题
$μ_ {\ star} $质量:黑暗能源调查的弱透镜校准1年Redmapper群集使用恒星质量
$μ_{\star}$ Masses: Weak Lensing Calibration of the Dark Energy Survey Year 1 redMaPPer Clusters using Stellar Masses
论文作者
论文摘要
我们介绍了恒星质量质量$μ_ {\ star} $质量的弱透镜质量校准。在盲目的分析中,我们使用$ \ sim 6,000 $群集分为12个子集,范围为$ 0.1 \ leqslant z <0.65 $和$μ__ {\ star} $最高$ \ sim 5.5 \ sim 5.5 \ times 10^{13} {13} m _ {\ odot} $,通过这些syberssss的平均群体,以及这些群体的平均群体,以及这些seversss seversss的平均值。在我们的模型中,我们解释了以下系统不确定性的来源:剪切测量和光度红移误差,误认为源样本的污染,偏离NFW光晕曲线的偏差,晕轮三轴性和投影效应。我们使用推断的质量来估计关节质量 - $μ_ {\ star} $ - $ z $缩放关系由$ \ langle m_ {200c} | μ_ {\ star},z \ rangle = m_0(μ_ {\ star} /5.16 \ Times 10^{12} \ Mathrm {m _ {\ odot}}}我们发现$ m_0 =(1.14 \ pm 0.07)\ times 10^{14} \ mathrm {m _ {\ odot}} $带有$ f_ {μ_ {μ_{\ star}} = 0.76 \ pm pm 0.06 $和$ g_z = -1.14 \ pm pm 0.37 $ 0.37 $ 0.37 $。我们讨论使用$μ_ {\ star} $作为互补的质量代理:for:$ i)$:$ i)$探索低$ z $,$λ<20 $和高$λ$,$λ$,$ z $,$ z \ sim sim 1 $; $ ii)$测试系统学,例如针对集群宇宙学应用程序的投影效应。
We present the weak lensing mass calibration of the stellar mass based $μ_{\star}$ mass proxy for redMaPPer galaxy clusters in the Dark Energy Survey Year 1. For the first time we are able to perform a calibration of $μ_{\star}$ at high redshifts, $z>0.33$. In a blinded analysis, we use $\sim 6,000$ clusters split into 12 subsets spanning the ranges $0.1 \leqslant z<0.65$ and $μ_{\star}$ up to $\sim 5.5 \times 10^{13} M_{\odot}$, and infer the average masses of these subsets through modelling of their stacked weak lensing signal. In our model we account for the following sources of systematic uncertainty: shear measurement and photometric redshift errors, miscentring, cluster-member contamination of the source sample, deviations from the NFW halo profile, halo triaxiality and projection effects. We use the inferred masses to estimate the joint mass--$μ_{\star}$--$z$ scaling relation given by $\langle M_{200c} | μ_{\star},z \rangle = M_0 (μ_{\star}/5.16\times 10^{12} \mathrm{M_{\odot}})^{F_{μ_{\star}}} ((1+z)/1.35)^{G_z}$. We find $M_0= (1.14 \pm 0.07) \times 10^{14} \mathrm{M_{\odot}}$ with $F_{μ_{\star}}= 0.76 \pm 0.06$ and $G_z= -1.14 \pm 0.37$. We discuss the use of $μ_{\star}$ as a complementary mass proxy to the well-studied richness $λ$ for: $i)$ exploring the regimes of low $z$, $λ<20$ and high $λ$, $z \sim 1$; $ii)$ testing systematics such as projection effects for applications in cluster cosmology.