论文标题
通过相关分析来解释gan的潜在空间,以进行可控的概念操纵
Interpreting the Latent Space of GANs via Correlation Analysis for Controllable Concept Manipulation
论文作者
论文摘要
生成的对抗网(gan)已成功地应用于许多领域,例如产生图像,内部介绍,超分辨率和药物发现等,到目前为止,GAN的内部过程远未被理解。为了更深入了解gan的固有机制,在本文中,提出了一种方法来通过分析潜在变量与生成图像中的相应语义内容之间的相关性来解释gan的潜在空间。与以前专注于通过特征可视化解剖模型的方法不同,这项工作的重点放在潜在空间中的变量上,即潜在变量如何影响生成结果的定量分析。考虑到具有固定权重的预处理的GAN模型,潜在变量被干预以分析其对生成图像中语义含量的影响。可以为特定内容生成而得出一组控制潜在变量,并可以实现可控的语义内容操纵。该方法在数据集时尚持有者和UT Zappos50k上作证,实验结果显示其有效性。
Generative adversarial nets (GANs) have been successfully applied in many fields like image generation, inpainting, super-resolution and drug discovery, etc., by now, the inner process of GANs is far from been understood. To get deeper insight of the intrinsic mechanism of GANs, in this paper, a method for interpreting the latent space of GANs by analyzing the correlation between latent variables and the corresponding semantic contents in generated images is proposed. Unlike previous methods that focus on dissecting models via feature visualization, the emphasis of this work is put on the variables in latent space, i.e. how the latent variables affect the quantitative analysis of generated results. Given a pretrained GAN model with weights fixed, the latent variables are intervened to analyze their effect on the semantic content in generated images. A set of controlling latent variables can be derived for specific content generation, and the controllable semantic content manipulation be achieved. The proposed method is testified on the datasets Fashion-MNIST and UT Zappos50K, experiment results show its effectiveness.