论文标题

在准驱动的临界量子系统中加热的精细结构

The fine structure of heating in a quasiperiodically driven critical quantum system

论文作者

Lapierre, Bastien, Choo, Kenny, Tiwari, Apoorv, Tauber, Clément, Neupert, Titus, Chitra, Ramasubramanian

论文摘要

我们研究了式驱动时,研究通用一维临界系统的加热动力学。具体而言,我们考虑了一个纤维科学驱动序列,其中包括描述此类关键系统及其正弦方形变形对应物的统一形成共形场理论(CFT)。渐近动力学由lyapunov指数决定,该指数具有分形结构嵌入cantor线,其中指数完全为零。远离这些cantor线,系统通常以非共性的方式加热到无限能量,在这种方式中,准粒子激发聚集在少数精选的空间位置,从而在这些点上积累了能量。在高频制度中可以看到没有加热的周期性动力学。当我们穿越分形区域并接近cantor线时,加热会大大减慢,而在频道镜时期,准粒子完全脱离了域。我们的设置使我们能够在可集成系统中的快速和超慢加热方案之间进行调音。

We study the heating dynamics of a generic one dimensional critical system when driven quasiperiodically. Specifically, we consider a Fibonacci drive sequence comprising the Hamiltonian of uniform conformal field theory (CFT) describing such critical systems and its sine-square deformed counterpart. The asymptotic dynamics is dictated by the Lyapunov exponent which has a fractal structure embedding Cantor lines where the exponent is exactly zero. Away from these Cantor lines, the system typically heats up fast to infinite energy in a non-ergodic manner where the quasiparticle excitations congregate at a small number of select spatial locations resulting in a build up of energy at these points. Periodic dynamics with no heating for physically relevant timescales is seen in the high frequency regime. As we traverse the fractal region and approach the Cantor lines, the heating slows enormously and the quasiparticles completely delocalise at stroboscopic times. Our setup allows us to tune between fast and ultra-slow heating regimes in integrable systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源