论文标题
基于移动设备位置数据的数据驱动的旅行模式共享估计框架
A Data-Driven Travel Mode Share Estimation Framework based on Mobile Device Location Data
论文作者
论文摘要
移动设备位置数据(MDLD)包含丰富的旅行行为信息,以支持旅行需求分析。与传统的旅行调查相比,MDLD的人口及其流动性具有较大的时空覆盖范围。但是,默认情况下不包含地面真相信息,例如旅行起源和目的地,旅行模式和旅行目的。必须估算这种重要属性以最大程度地提高数据的实用性。本文倾向于研究MDLD在估计汇总水平的旅行模式份额方面的能力。提出了一个数据驱动的框架,以从MDLD中提取旅行行为信息。所提出的框架首先通过修改的基于噪声(ST-DBSCAN)算法的应用程序的时空密度聚类来确定跳闸的结尾。然后,为每次旅行提取三种类型的功能,以使用机器学习模型插入旅行模式。带有地面真相信息的标记的MDLD数据集用于训练拟议的模型,从而在识别行程端的准确性95%,并使用随机森林(RF)分类器归纳五种旅行模式(驱动器,铁路,公共汽车,自行车和步行)的精度为93%。然后将所提出的框架应用于两个大规模的MDLD数据集,分别涵盖了巴尔的摩 - 华盛顿大都会地区和美国。将估计的行程距离,旅行时间,旅行率分布和旅行模式份额与不同地理位置的旅行调查进行了比较。结果表明,为了研究多模式旅行需求,了解移动性趋势和支持决策的不同州和大都市地区,可以轻松地应用所提出的框架。
Mobile device location data (MDLD) contains abundant travel behavior information to support travel demand analysis. Compared to traditional travel surveys, MDLD has larger spatiotemporal coverage of population and its mobility. However, ground truth information such as trip origins and destinations, travel modes, and trip purposes are not included by default. Such important attributes must be imputed to maximize the usefulness of the data. This paper tends to study the capability of MDLD on estimating travel mode share at aggregated levels. A data-driven framework is proposed to extract travel behavior information from the MDLD. The proposed framework first identifies trip ends with a modified Spatiotemporal Density-based Spatial Clustering of Applications with Noise (ST-DBSCAN) algorithm. Then three types of features are extracted for each trip to impute travel modes using machine learning models. A labeled MDLD dataset with ground truth information is used to train the proposed models, resulting in 95% accuracy in identifying trip ends and 93% accuracy in imputing five travel modes (drive, rail, bus, bike and walk) with a Random Forest (RF) classifier. The proposed framework is then applied to two large-scale MDLD datasets, covering the Baltimore-Washington metropolitan area and the United States, respectively. The estimated trip distance, trip time, trip rate distribution, and travel mode share are compared against travel surveys at different geographies. The results suggest that the proposed framework can be readily applied in different states and metropolitan regions with low cost in order to study multimodal travel demand, understand mobility trends, and support decision making.