论文标题

基于原子环境的机器学习,研究局部晶体学分析的相变

Investigating phase transitions from local crystallographic analysis based on machine learning of atomic environments

论文作者

Vasudevan, Rama K., Ziatdinov, Maxim, Vlcek, Lukas, Morozovska, Anna N., Eliseev, Eugene A., Yang, Shi-Ze, Gong, Yongji, Ajayan, Pulickel, Zhou, Wu, Chisholm, Matthew F., Kalinin, Sergei V.

论文摘要

传统上,使用宏观功能表征和散射技术的组合探索了相变,从而洞悉了晶格的平均特性和对称性,但相位过渡期间局部原子水平机制通常仍然未知。在这里,我们探索了MOS2 RES2系统中三角杆菌和扭曲的八面体葡萄糖层的八面体相之间相变的机制,从局部自由度的观察结果,即通过扫描原子位置通过扫描透射电子显微镜(STEM)。我们采用基于原子环境的机器学习的局部晶体学分析来建立从原子级别上升的过渡,并确定控制局部对称性破坏的局部和全局变量。特别是,我们认为平均对称性破坏幅度对全球和局部浓度的依赖性可用于分离局部化学和全球电子对过渡的影响。这种方法允许探索除传统宏观描述以外的原子机制,并利用固体中组成波动的成像来探索一系列已实现和观察到的局部静态图表和原子构型的相变。

Traditionally, phase transitions are explored using a combination of macroscopic functional characterization and scattering techniques, providing insight into average properties and symmetries of the lattice but local atomic level mechanisms during phase transitions generally remain unknown. Here we explore the mechanisms of a phase transition between the trigonal prismatic and distorted octahedral phases of layered chalogenides in the MoS2 ReS2 system from the observations of local degrees of freedom, namely atomic positions by Scanning Transmission Electron Microscopy (STEM). We employ local crystallographic analysis based on machine learning of atomic environments to build a picture of the transition from the atomic level up and determine local and global variables controlling the local symmetry breaking. In particular, we argue that the dependence of the average symmetry breaking distortion amplitude on global and local concentration can be used to separate local chemical and global electronic effects on transition. This approach allows exploring atomic mechanisms beyond the traditional macroscopic descriptions, utilizing the imaging of compositional fluctuations in solids to explore phase transitions over a range of realized and observed local stoichiometries and atomic configurations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源