论文标题

图像响应通过深神经网络回归

Image Response Regression via Deep Neural Networks

论文作者

Zhang, Daiwei, Li, Lexin, Sripada, Chandra, Kang, Jian

论文摘要

描述图像与协变量向量之间的关联是医学成像研究中的核心意义。为了解决这个图像响应回归的问题,我们在空间变化的系数模型的框架中提出了一种新型的非参数方法,其中通过深层神经网络估算了空间变化的功能。与现有解决方案相比,该建议的方法明确说明了空间平滑度和主题异质性,具有直接的解释,并且在捕获复杂的关联模式方面具有高度灵活性和准确性。我们方法中的一个关键思想是将图像体素视为有效样品,这不仅减轻了困扰大多数医学成像研究的有限样本量问题,而且还会导致更强大和更可重复的结果。着眼于广泛的分段平滑函数家族,我们建立了估计和选择一致性,并得出渐近误差界限。我们通过密集的模拟证明了该方法的功效,并通过对两个功能磁共振成像数据集的分析进一步说明了其优势。

Delineating the associations between images and a vector of covariates is of central interest in medical imaging studies. To tackle this problem of image response regression, we propose a novel nonparametric approach in the framework of spatially varying coefficient models, where the spatially varying functions are estimated through deep neural networks. Compared to existing solutions, the proposed method explicitly accounts for spatial smoothness and subject heterogeneity, has straightforward interpretations, and is highly flexible and accurate in capturing complex association patterns. A key idea in our approach is to treat the image voxels as the effective samples, which not only alleviates the limited sample size issue that haunts the majority of medical imaging studies, but also leads to more robust and reproducible results. Focusing on a broad family of piecewise smooth functions, we establish the estimation and selection consistency, and derive the asymptotic error bounds. We demonstrate the efficacy of the method through intensive simulations, and further illustrate its advantages with analyses of two functional magnetic resonance imaging datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源