论文标题
动荡热声系统和智能无源控制的时空动力学中的关键区域
Critical region in the spatiotemporal dynamics of a turbulent thermoacoustic system and smart passive control
论文作者
论文摘要
我们制定了一种被动控制策略,用于抑制虚张声势稳定的预混合预耗电燃烧器中的热声不稳定性。当等效比变化时,通过燃烧器的间歇性从燃烧噪声到热声不稳定。我们同时执行声压,2D-PIV和CH $^*$化学发光测量,以捕获过渡过程中压力波动,速度场和热释放速率(HRR)场。我们测量在声学频率,时间平均涡度,时间平均HRR和Rayleigh指数下湍流速度幅度的空间分布,并确定各种显着性区域。我们通过稳定地注入次级微型喷射空气来优化注射位置并确定关键区域来实现被动控制策略。用二次空气靶向临界区域会导致主要的热声模式抑制超过20 dB。我们观察到,在转储平面后从剪切层形成的相干结构被抑制,从而导致HRR波动的不连贯空间分布。我们发现湍流幅度正确地识别了热声不稳定性期间优化被动控制的关键区域。相反,瑞利指数确定了最重要的声学驾驶区域。但是,它不能识别最敏感的控制区域。最后,我们通过确定从湍流速度场测得的赫斯特指数的空间分布来扩展分析。我们表明,与其他物理措施不同,赫斯特指数在热声不稳定性和间歇性中识别关键区域。
We develop a passive control strategy for suppressing thermoacoustic instability in a bluff-body stabilized premixed turbulent combustor. When the equivalence ratio is varied, there is a transition from combustion noise to thermoacoustic instability via intermittency in the combustor. We perform simultaneous acoustic pressure, 2D-PIV, and CH$^*$ chemiluminescence measurements to capture the pressure fluctuations, the velocity field, and the heat release rate (HRR) field during the transition. We measure the spatial distribution of the amplitude of turbulent velocity at the acoustic frequency, time-averaged vorticity, time-averaged HRR, and Rayleigh index and identify various regions of significance. We implement a passive control strategy by targeting these regions with a steady injection of secondary micro-jet of air to optimize the injection location and determine the critical region. Targeting the critical region with secondary air leads to greater than 20 dB suppression of the dominant thermoacoustic mode. We observe that the coherent structure forming from the shear layer following the dump plane gets suppressed, leading to an incoherent spatial distribution of HRR fluctuations. We find that the turbulent velocity amplitude correctly identifies the critical region for optimized passive control during thermoacoustic instability. In contrast, the Rayleigh index identifies the region of the most significant acoustic driving; however, it does not identify the region most sensitive to control. Finally, we extend our analysis by determining the spatial distribution of the Hurst exponent measured from the turbulent velocity field. We show that the Hurst exponent identifies the critical region during thermoacoustic instability and intermittency, unlike the other physical measures.