论文标题

评估Rover导航的3D CNN语义映射

Evaluation of 3D CNN Semantic Mapping for Rover Navigation

论文作者

Chiodini, Sebastiano, Torresin, Luca, Pertile, Marco, Debei, Stefano

论文摘要

地形评估是自主探索流浪者的关键方面,周围环境识别需要多种目的,例如最佳轨迹计划和自主目标识别。在这项工作中,我们提出了一种为火星环境生成准确的三维语义图的技术。该算法用作输入的立体声图像,该立体声图像由安装在流动站上的摄像机获取。首先,图像用DeepLabv3+标记,这是一个编码器卷积神经Networl(CNN)。然后,通过语义分割获得的标签合并到体素表示中的立体深度图。我们在ESA Katwijk Beach Planetary Rover数据集上评估了我们的方法。

Terrain assessment is a key aspect for autonomous exploration rovers, surrounding environment recognition is required for multiple purposes, such as optimal trajectory planning and autonomous target identification. In this work we present a technique to generate accurate three-dimensional semantic maps for Martian environment. The algorithm uses as input a stereo image acquired by a camera mounted on a rover. Firstly, images are labeled with DeepLabv3+, which is an encoder-decoder Convolutional Neural Networl (CNN). Then, the labels obtained by the semantic segmentation are combined to stereo depth-maps in a Voxel representation. We evaluate our approach on the ESA Katwijk Beach Planetary Rover Dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源