论文标题
懒惰者:一种用于计算马尔可夫等效DAG和设计实验的快速算法
LazyIter: A Fast Algorithm for Counting Markov Equivalent DAGs and Designing Experiments
论文作者
论文摘要
一组随机变量之间的因果关系通常由有向的无环图(DAG)表示,如果$ x $是$ y $的直接原因,则来自变量$ x $到可变$ y $的指向边缘。从纯观测数据中,可以将真实的因果图识别为Markov等价类(MEC),该类别是一组DAG,在变量之间具有相同的条件独立性。 MEC的大小是通过执行干预措施恢复真实因果图的复杂性的度量。我们提出了一种在干预结果给定对可能的MEC上有效迭代的方法。我们利用提出的方法在主动和被动学习设置中计算MEC大小和实验设计。与以前用于计算MEC大小的工作相比,我们提出的算法将时间复杂性降低了稀疏图的$ O(n)$,其中$ n $是系统中变量的数量。此外,将我们的方法与动态编程整合在一起,我们设计了一种用于被动实验设计的最佳算法。实验结果表明,我们提出的用于计算MEC大小和实验设计的算法优于最新技术。
The causal relationships among a set of random variables are commonly represented by a Directed Acyclic Graph (DAG), where there is a directed edge from variable $X$ to variable $Y$ if $X$ is a direct cause of $Y$. From the purely observational data, the true causal graph can be identified up to a Markov Equivalence Class (MEC), which is a set of DAGs with the same conditional independencies between the variables. The size of an MEC is a measure of complexity for recovering the true causal graph by performing interventions. We propose a method for efficient iteration over possible MECs given intervention results. We utilize the proposed method for computing MEC sizes and experiment design in active and passive learning settings. Compared to previous work for computing the size of MEC, our proposed algorithm reduces the time complexity by a factor of $O(n)$ for sparse graphs where $n$ is the number of variables in the system. Additionally, integrating our approach with dynamic programming, we design an optimal algorithm for passive experiment design. Experimental results show that our proposed algorithms for both computing the size of MEC and experiment design outperform the state of the art.