论文标题
连续定量的Helly型结果
Continuous quantitative Helly-type results
论文作者
论文摘要
Brazitikos的结果取决于定量的Helly型定理(对于数量和直径)依赖于Srivastava对John分解的稀疏作用。由于Friedland和Youssef,我们通过更强大的结果改变了这项技术。这是近似准确性的适当选择,使我们能够获得对所涉及的凸集数量敏感的Helly-Type版本。
Brazitikos' results on quantititative Helly-type theorems (for the volume and for the diameter) rely on the work of Srivastava on sparsification of John's decompositions. We change this technique by a stronger recent result due to Friedland and Youssef. This, together with an appropriate selection in the accuracy of the approximation, allow us to obtain Helly-type versions which are sensitive to the number of convex sets involved.