论文标题
结缔组织的严格化
Rigidification of connective comodules
论文作者
论文摘要
令$ \ mathbb {k} $为全局尺寸零的通勤环。我们表明,我们可以在$ \ mathbb {k} $的Eilenberg-Mac Lane频谱上固化同质综合模块的相干综合综合。也就是说,同型相干综合的$ \ infty $ - 类别以$ \ mathbb {k} $上的非阴性链中的严格comodules的模型类别表示。这些综合物与严格共同关联并简单相关的山地上。刚化的结果使我们能够通过双面cobar分辨率来得出Comodules comodules的Cotensor产品的概念,并赋予$ \ infty $ - 类别的comodules的概念。
Let $\mathbb{k}$ be a commutative ring with global dimension zero. We show that we can rigidify homotopy coherent comodules in connective modules over the Eilenberg-Mac Lane spectrum of $\mathbb{k}$. That is, the $\infty$-category of homotopy coherent comodules is represented by a model category of strict comodules in non-negative chain complexes over $\mathbb{k}$. These comodules are over a coalgebra that is strictly coassociative and simply connected. The rigidification result allows us to derive the notion of cotensor product of comodules and endows the $\infty$-category of comodules with a symmetric monoidal structure via the two-sided cobar resolution.