论文标题
最小化噪声量子计算机上的估计运行时
Minimizing estimation runtime on noisy quantum computers
论文作者
论文摘要
对于许多实际价值问题,杂种量子古典算法(例如变异量子量子)所需的测量数量(例如变异量子量化)的数量是高度较高的。对于此类问题,实现量子优势将需要大幅度降低这一成本的方法。以前的量子算法降低了测量成本(例如量子振幅和相位估计),因此错误率对于近期实施而言太低。在这里,我们提出了利用可用量子相干性的方法,以最大程度地增强噪声量子设备上的采样功率,与变异量子量化量子级(VQE)的标准采样方法相比,降低了测量数和运行时。我们的方案从量子计量学,相位估计和最新的“ alpha-vqe”提案中获得灵感,该提案达到了一种通用公式,该公式适合误差并且不需要ancilla量子。该方法的核心对象是我们所说的“工程可能性功能”(ELF),用于进行贝叶斯推断。我们展示了小精灵形式主义如何提高抽样中信息增益的速率,因为物理硬件从嘈杂的中间量子量子计算机转变为纠正量子误差的量子计算机。该技术加快了许多量子算法的核心组成部分,其应用包括化学,材料,金融等。与VQE类似,我们预计小规模的实现在当今的量子设备上可以实现。
The number of measurements demanded by hybrid quantum-classical algorithms such as the variational quantum eigensolver (VQE) is prohibitively high for many problems of practical value. For such problems, realizing quantum advantage will require methods which dramatically reduce this cost. Previous quantum algorithms that reduce the measurement cost (e.g. quantum amplitude and phase estimation) require error rates that are too low for near-term implementation. Here we propose methods that take advantage of the available quantum coherence to maximally enhance the power of sampling on noisy quantum devices, reducing measurement number and runtime compared to the standard sampling method of the variational quantum eigensolver (VQE). Our scheme derives inspiration from quantum metrology, phase estimation, and the more recent "alpha-VQE" proposal, arriving at a general formulation that is robust to error and does not require ancilla qubits. The central object of this method is what we call the "engineered likelihood function" (ELF), used for carrying out Bayesian inference. We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy intermediate-scale quantum computers into that of quantum error corrected ones. This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond. Similar to VQE, we expect small-scale implementations to be realizable on today's quantum devices.