论文标题
Quasiregular曲线:Hölder连续性和更高的集成性
Quasiregular curves: Hölder continuity and higher integrability
论文作者
论文摘要
我们表明,从欧几里得域到欧几里得空间相对于协会$ω$是本地$(1/k)(\ lvertω\ rvert/|ω| _ {\ ell_1})$ - hölderunconunconuf。我们还表明,Quasiregular曲线享有更高的集成性。
We show that a $K$-quasiregular $ω$-curve from a Euclidean domain to a Euclidean space with respect to a covector $ω$ is locally $(1/K)(\lVert ω\rVert/|ω|_{\ell_1})$-Hölder continuous. We also show that quasiregular curves enjoy higher integrability.