论文标题
弹性动力学单面均匀的绿色功能表示:理论和数值示例
Elastodynamic single-sided homogeneous Green's function representation: Theory and numerical examples
论文作者
论文摘要
均匀的绿色功能是脉冲响应及其时间反转之间的差异。根据现有的表示定理,可以通过封闭介质的边界的测量值来计算与介质内部介质对相关的均匀绿色功能。但是,在许多应用中,例如地震成像,延时监测,医学成像,非毁灭性测试等,媒体只能从一侧访问。波浪理论的最新发展为在单个(开放)边界处的波场记录而言,在弹性介质中的均匀绿色功能提供了一种表示。尽管具有单向性,但弹性动力均匀的绿色功能表示介绍了介质内部的所有散射顺序。我们介绍了弹性动力学单面均相绿色功能表示的理论,并用2D侧面不变培养基的数值示例来说明它。对于传播波,所得的均匀绿色功能与数值精度内的确切功能相匹配,证明了理论的准确性。此外,我们分析了均质绿色功能的单侧表示的准确性,以示消化波隧道。
The homogeneous Green's function is the difference between an impulse response and its time-reversal. According to existing representation theorems, the homogeneous Green's function associated with source-receiver pairs inside a medium can be computed from measurements at a boundary enclosing the medium. However, in many applications such as seismic imaging, time-lapse monitoring, medical imaging, non-destructive testing, etc., media are only accessible from one side. A recent development of wave theory has provided a representation of the homogeneous Green's function in an elastic medium in terms of wavefield recordings at a single (open) boundary. Despite its single-sidedness, the elastodynamic homogeneous Green's function representation accounts for all orders of scattering inside the medium. We present the theory of the elastodynamic single-sided homogeneous Green's function representation and illustrate it with numerical examples for 2D laterally-invariant media. For propagating waves, the resulting homogeneous Green's functions match the exact ones within numerical precision, demonstrating the accuracy of the theory. In addition, we analyse the accuracy of the single-sided representation of the homogeneous Green's function for evanescent wave tunnelling.