论文标题

代数$α$ - 福德树在进化中

The algebraic $α$-Ford tree under evolution

论文作者

Nussbaumer, Josué, Winter, Anita

论文摘要

二元系统发育树的无效模型可用于测试现实世界中的假设。在本文中,我们将系统发育视为没有边缘长度的二进制树,并将其与采样措施一起编码为代数测量树。这允许通过关注子树及其子树质量的样本形状来描述实际系统发育之间的相似程度。我们将更详细地描述了零模型的子树质量的统计量,即分支树,结合树和梳子树。最后,我们使用来自Martingale问题的方法来表征在扩散极限内进化的系统发育树。

Null models of binary phylogenetic trees are useful for testing hypotheses on real world phylogenies. In this paper we consider phylogenies as binary trees without edge lengths together with a sampling measure and encode them as algebraic measure trees. This allows to describe the degree of similarity between actual and simulated phylogenies by focusing on the sample shape of subtrees and their subtree masses. We describe the annealed law of the statistics of subtree masses of null models, namely the branching tree, the coalescent tree, and the comb tree in more detail. Finally, we use methods from martingale problems to characterize evolving phylogenetic trees in the diffusion limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源