论文标题

马尔可夫过程的随机潜力

Random potentials for Markov processes

论文作者

Kondratiev, Yuri, da Silva, José L.

论文摘要

该论文专用于积分函数$ \ int_0^\ infty f(x_t)\,{\ mathrm {d} t} $在$ \ x $的情况下,在$ \ x $的情况下,在$ \ x $中。可以确定,可以将这些功能作为积分$ \ int _ {\ x} f(y)\ g(x,x,\ mathrm {d} y,ω)$具有矢量值随机度量$ \ g(x,x,\ mathrm {d} y,ω)$。考虑了一些示例,例如复合泊松过程,布朗运动和扩散。

The paper is devoted to the integral functionals $\int_0^\infty f(X_t)\,{\mathrm{d}t}$ of Markov processes in $\X$ in the case $d\ge 3$. It is established that such functionals can be presented as the integrals $\int_{\X} f(y) \G(x, \mathrm{d}y, ω)$ with vector valued random measure $\G(x, \mathrm{d}y, ω)$. Some examples such as compound Poisson processes, Brownian motion and diffusions are considered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源