论文标题
在嘈杂的前向MBES图像中,基于深度学习的鱼类细分
Deep Learning based Segmentation of Fish in Noisy Forward Looking MBES Images
论文作者
论文摘要
在这项工作中,我们研究了一种深度学习方法(DL)方法,用于在由前瞻性多冰响应器(MBES)产生的嘈杂的低分辨率图像的小数据集中进行鱼类分割。我们基于DL和卷积神经网络(CNN)的最新进展,用于语义分割,并展示了针对成像声纳所预测的所有范围 - 齐路位置的鱼/非鱼类概率预测的端到端方法。我们使用丹麦声音和法罗群岛的自收集的数据集训练和测试我们的模型和当前技术,即使使用低容量的数据集,也可以获得令人满意的性能和概括。我们表明,我们的模型证明了所需的性能,并学会了利用语义上下文的重要性,并将其考虑到将噪声和非目标与实际目标分开的。此外,我们提出了在低成本嵌入式平台上部署模型的技术,以获得更高的性能适合边缘环境的拟合 - 在该环境中,计算和功率受尺寸/成本限制 - 用于测试和原型制作。
In this work, we investigate a Deep Learning (DL) approach to fish segmentation in a small dataset of noisy low-resolution images generated by a forward-looking multibeam echosounder (MBES). We build on recent advances in DL and Convolutional Neural Networks (CNNs) for semantic segmentation and demonstrate an end-to-end approach for a fish/non-fish probability prediction for all range-azimuth positions projected by an imaging sonar. We use self-collected datasets from the Danish Sound and the Faroe Islands to train and test our model and present techniques to obtain satisfying performance and generalization even with a low-volume dataset. We show that our model proves the desired performance and has learned to harness the importance of semantic context and take this into account to separate noise and non-targets from real targets. Furthermore, we present techniques to deploy models on low-cost embedded platforms to obtain higher performance fit for edge environments - where compute and power are restricted by size/cost - for testing and prototyping.