论文标题

联合贝叶斯时空模型,以整合R-Inla中空间未对准的空气污染数据

A joint bayesian space-time model to integrate spatially misaligned air pollution data in R-INLA

论文作者

Forlani, Chiara, Bhatt, Samir, Cameletti, Michela, Krainski, Elias, Blangiardo, Marta

论文摘要

在空气污染研究中,分散模型提供了覆盖整个空间结构域的网格水平浓度的估计,然后对监测站的测量进行校准。但是,这些不同的数据源在空间和时间上被错位。如果不考虑未对准,则会偏向预测。我们旨在证明多个数据源的组合(例如分散模型输出,地面观测和协变量)如何导致对网格水平上空气污染的更准确预测。我们考虑在2007 - 2011年大伦敦及周围环境中的二氧化氮(NO2)浓度,并结合了两个不同的分散模型。包括不同的空间和时间效应集,以获得最佳的预测能力。我们提出的模型在校准和贝叶斯融合技术之间的数据融合红色之间构成。与其他示例不同,我们共同建模响应(监视站的浓度水平)和分散模型在不同尺度上输出,从而考虑了不同的不确定性来源。我们的时空模型使我们能够重建每个模型组件的潜在场,并预测每日污染浓度。我们将提出模型的预测能力与其他已建立的方法进行了比较,以说明未对准的未对准(例如双线性插值),这表明在我们的案例研究中,联合模型是更好的选择。

In air pollution studies, dispersion models provide estimates of concentration at grid level covering the entire spatial domain, and are then calibrated against measurements from monitoring stations. However, these different data sources are misaligned in space and time. If misalignment is not considered, it can bias the predictions. We aim at demonstrating how the combination of multiple data sources, such as dispersion model outputs, ground observations and covariates, leads to more accurate predictions of air pollution at grid level. We consider nitrogen dioxide (NO2) concentration in Greater London and surroundings for the years 2007-2011, and combine two different dispersion models. Different sets of spatial and temporal effects are included in order to obtain the best predictive capability. Our proposed model is framed in between calibration and Bayesian melding techniques for data fusion red. Unlike other examples, we jointly model the response (concentration level at monitoring stations) and the dispersion model outputs on different scales, accounting for the different sources of uncertainty. Our spatio-temporal model allows us to reconstruct the latent fields of each model component, and to predict daily pollution concentrations. We compare the predictive capability of our proposed model with other established methods to account for misalignment (e.g. bilinear interpolation), showing that in our case study the joint model is a better alternative.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源