论文标题
物理意识到的时空模块,具有用于元学习的辅助任务
Physics-aware Spatiotemporal Modules with Auxiliary Tasks for Meta-Learning
论文作者
论文摘要
建模现实世界物理系统的动力学对于时空预测任务至关重要,但是在数据受到限制时挑战。现实数据的稀缺性以及复制数据分布的困难阻碍了直接应用元学习技术。尽管对数据的偏微分方程(PDE)的知识有助于快速适应几乎没有观察,但是确切地找到在现实世界中物理系统中观察的方程式大多是不可行的。在这项工作中,我们提出了一个具有辅助任务的框架,物理学意识到的元学习,其空间模块包含了独立于PDE的知识和时间模块,分别利用了空间模块中的广义特征,分别适用于有限数据。该框架的灵感来自于数学上以连续性方程表示的局部保护定律,并且不需要确切的管理方程式形式来对时空观测进行建模。提出的方法减轻了对大量实际任务进行元学习的需求,该任务通过利用模拟数据中的空间信息来元启动空间模块。我们将提出的框架应用于合成和现实时代的时空预测任务,并以有限的观察表明其出色的性能。
Modeling the dynamics of real-world physical systems is critical for spatiotemporal prediction tasks, but challenging when data is limited. The scarcity of real-world data and the difficulty in reproducing the data distribution hinder directly applying meta-learning techniques. Although the knowledge of governing partial differential equations (PDE) of data can be helpful for the fast adaptation to few observations, it is mostly infeasible to exactly find the equation for observations in real-world physical systems. In this work, we propose a framework, physics-aware meta-learning with auxiliary tasks, whose spatial modules incorporate PDE-independent knowledge and temporal modules utilize the generalized features from the spatial modules to be adapted to the limited data, respectively. The framework is inspired by a local conservation law expressed mathematically as a continuity equation and does not require the exact form of governing equation to model the spatiotemporal observations. The proposed method mitigates the need for a large number of real-world tasks for meta-learning by leveraging spatial information in simulated data to meta-initialize the spatial modules. We apply the proposed framework to both synthetic and real-world spatiotemporal prediction tasks and demonstrate its superior performance with limited observations.