论文标题
评论的用户分析以获取准确的基于时间的建议
User Profiling from Reviews for Accurate Time-Based Recommendations
论文作者
论文摘要
推荐系统是使用户参与系统,增加参与并向他们展示可能找不到的资源的一种宝贵方式。一个重大的挑战是,用户兴趣可能会随着时间而变化,并且某些项目具有固有的时间方面。结果,推荐系统应尝试并考虑到时间依赖的用户项目关系。但是,用户配置文件的时间方面可能并不总是明确可用,因此我们可能需要从可用资源中推断此信息。亚马逊等网站上的产品评论代表了一个有价值的数据源,以了解为什么有人购买了一件商品以及可能是谁是为了谁。然后可以使用此信息来构建动态用户配置文件。在本文中,我们演示了利用评论来提取时间信息来推断用户的\ textit {年龄类别偏好},并利用此功能来生成时间依赖时间的建议。鉴于年龄和时间的可预测性却不断变化的性质,我们表明,与最先进的技术相比,使用此动态方面产生的建议可以提高准确性。评论中的时间相关内容可以使建议者能够超越找到类似的项目或用户,从而有可能预测用户的未来需求。
Recommender systems are a valuable way to engage users in a system, increase participation and show them resources they may not have found otherwise. One significant challenge is that user interests may change over time and certain items have an inherently temporal aspect. As a result, a recommender system should try and take into account the time-dependant user-item relationships. However, temporal aspects of a user profile may not always be explicitly available and so we may need to infer this information from available resources. Product reviews on sites, such as Amazon, represent a valuable data source to understand why someone bought an item and potentially who the item is for. This information can then be used to construct a dynamic user profile. In this paper, we demonstrate utilising reviews to extract temporal information to infer the \textit{age category preference} of users, and leverage this feature to generate time-dependent recommendations. Given the predictable and yet shifting nature of age and time, we show that, recommendations generated using this dynamic aspect lead to higher accuracy compared with techniques from state of art. Mining temporally related content in reviews can enable the recommender to go beyond finding similar items or users to potentially predict a future need of a user.