论文标题

总深度差异:稳定的正规剂,用于反问题

Total Deep Variation: A Stable Regularizer for Inverse Problems

论文作者

Kobler, Erich, Effland, Alexander, Kunisch, Karl, Pock, Thomas

论文摘要

计算机视觉和医学成像中的各种问题可能会被视为反问题。解决反问题的常见方法是变异方法,这相当于最大程度地减少由数据保真度项组成的能量和正常化程序。通常,使用手工制作的正规化器,通常用最先进的深度学习方法表现出色。在这项工作中,我们通过引入数据驱动的通用总变化正常器来结合反问题的变异表述和深度学习。卷积神经网络以多个尺度和连续的块提取了本地特征。这种组合允许进行严格的数学分析,包括在平均场设置中对训练问题的最佳控制表述,以及针对正规器的初始值和参数进行稳定性分析。此外,我们通过实验验证针对对抗攻击的鲁棒性,并为概括误差得出上限。最后,我们实现了许多成像任务的最新结果。

Various problems in computer vision and medical imaging can be cast as inverse problems. A frequent method for solving inverse problems is the variational approach, which amounts to minimizing an energy composed of a data fidelity term and a regularizer. Classically, handcrafted regularizers are used, which are commonly outperformed by state-of-the-art deep learning approaches. In this work, we combine the variational formulation of inverse problems with deep learning by introducing the data-driven general-purpose total deep variation regularizer. In its core, a convolutional neural network extracts local features on multiple scales and in successive blocks. This combination allows for a rigorous mathematical analysis including an optimal control formulation of the training problem in a mean-field setting and a stability analysis with respect to the initial values and the parameters of the regularizer. In addition, we experimentally verify the robustness against adversarial attacks and numerically derive upper bounds for the generalization error. Finally, we achieve state-of-the-art results for numerous imaging tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源