论文标题
曲率与自由度:关键2+1 Horava理论的情况
Curvature vs degrees of freedom: The case of the critical 2+1 Horava theory
论文作者
论文摘要
我们介绍了在临界点上提出的2+1个不可注射的Horava理论的有趣案例,在临界点不具有局部自由度。临界点由理论的耦合常数的值定义。我们讨论尽管没有自由度,该理论如何接受非曲线或非稳定曲率的解决方案。我们认为没有宇宙恒定的理论,并且没有更高阶的衍生物术语,因此,这是可以在2+1的总体相对性的相同顺序上看到的效果。我们提出了一个不是渐近平坦的精确的非纤维溶液。具有非平凡曲率的溶液的存在似乎与渐近平坦条件的放松有关。我们讨论在该理论中没有牛顿潜力的类似物,并且一系列渐近平坦的几何形状会导致限制,即它们中唯一可以找到的解决方案是平坦的解决方案。
We present the interesting case of the 2+1 nonprojectable Horava theory formulated at the critical point, where it does not posses local degrees of freedom. The critical point is defined by the value of a coupling constant of the theory. We discuss how, in spite of the absence of degrees of freedom, the theory admits solutions with nonflat or nonconstant curvature. We consider the theory without cosmological constant and without terms of higher order derivatives, hence this is an effect that can be seen at the same order of 2+1 general relativity. We present an exact nonflat solution that is not asymptotically flat. The presence of solutions with nontrivial curvature seems to be related to the relaxing of the asymptotically flat condition. We discuss that there is no analogue of Newtonian potential in this theory, and a broad class of asymptotically flat geometries leads to the restriction that the only solutions that can be found among them are the flat ones.