论文标题
时间延迟镜头建模挑战
Time Delay Lens Modelling Challenge
论文作者
论文摘要
近年来,方法和数据的突破使引力时间延迟成为一种非常强大的工具,可以测量哈勃常数$ h_0 $。但是,已发布的最新分析要求为1年专家调查员时间以及每个系统的计算时间最多一百万小时。此外,随着精确度的提高,识别和减轻系统的不确定性至关重要。在此时间延迟镜头建模挑战中,我们旨在通过模拟数据集的盲目分析来评估当前足够快以处理50镜头的建模技术的精度和准确性水平。 rung 1和rung 2中的结果表明,仅使用点源位置的方法往往具有较低的精度($ 10-20 \%$),同时保持准确。在rung 2中,利用成像和运动数据集的全部信息的方法可以在目标准确性($ | a | <2 \%$)内恢复$ h_0 $,即使在存在众所周知的众所周知的点传播功能和复杂的源形态的情况下,即使存在众所周知的点源和复杂的源形态。对Rung 3的无缝隙分析表明,射线追踪的宇宙学模拟的数值精度不足以在百分比水平上测试透镜建模方法,从而难以解释结果。需要改进模拟的新挑战,以进一步研究系统不确定性。为了完整性,我们在附录中介绍了rung 3结果,并使用它们讨论各种方法来缓解未来盲人挑战中类似的微妙数据生成效果。
In recent years, breakthroughs in methods and data have enabled gravitational time delays to emerge as a very powerful tool to measure the Hubble constant $H_0$. However, published state-of-the-art analyses require of order 1 year of expert investigator time and up to a million hours of computing time per system. Furthermore, as precision improves, it is crucial to identify and mitigate systematic uncertainties. With this time delay lens modelling challenge we aim to assess the level of precision and accuracy of the modelling techniques that are currently fast enough to handle of order 50 lenses, via the blind analysis of simulated datasets. The results in Rung 1 and Rung 2 show that methods that use only the point source positions tend to have lower precision ($10 - 20\%$) while remaining accurate. In Rung 2, the methods that exploit the full information of the imaging and kinematic datasets can recover $H_0$ within the target accuracy ($ |A| < 2\%$) and precision ($< 6\%$ per system), even in the presence of poorly known point spread function and complex source morphology. A post-unblinding analysis of Rung 3 showed the numerical precision of the ray-traced cosmological simulations to be insufficient to test lens modelling methodology at the percent level, making the results difficult to interpret. A new challenge with improved simulations is needed to make further progress in the investigation of systematic uncertainties. For completeness, we present the Rung 3 results in an appendix, and use them to discuss various approaches to mitigating against similar subtle data generation effects in future blind challenges.