论文标题
使用散射转换的新方法来观察宇宙学
A new approach to observational cosmology using the scattering transform
论文作者
论文摘要
非高斯随机场的参数估计是天体物理学和宇宙学中的常见挑战。在本文中,我们主张使用散射转换执行此任务,这是一种统计工具与卷积神经网络(CNN)共享想法,但不需要培训也不需要进行调整。它生成一组紧凑的系数,可用作非高斯信息的可靠摘要统计数据。它特别适合呈现局部结构和分层聚类(例如宇宙密度场)的田地。 为了证明其力量,我们将此估计器应用于弱镜头的宇宙学参数推断问题。在具有逼真的噪声的模拟收敛图上,散射转换优于经典估计器,并且与最新的CNN相当。它保留了传统统计描述符的优势,具有可证明的稳定性,允许检查系统学,重要的是,散射系数是可解释的。它是观察性宇宙学和物理领域的研究的强大而有吸引力的估计量。
Parameter estimation with non-Gaussian stochastic fields is a common challenge in astrophysics and cosmology. In this paper, we advocate performing this task using the scattering transform, a statistical tool sharing ideas with convolutional neural networks (CNNs) but requiring no training nor tuning. It generates a compact set of coefficients, which can be used as robust summary statistics for non-Gaussian information. It is especially suited for fields presenting localized structures and hierarchical clustering, such as the cosmological density field. To demonstrate its power, we apply this estimator to a cosmological parameter inference problem in the context of weak lensing. On simulated convergence maps with realistic noise, the scattering transform outperforms classic estimators and is on a par with state-of-the-art CNN. It retains the advantages of traditional statistical descriptors, has provable stability properties, allows to check for systematics, and importantly, the scattering coefficients are interpretable. It is a powerful and attractive estimator for observational cosmology and the study of physical fields in general.