论文标题
改进的置换测试算法
Improved Algorithm for Permutation Testing
论文作者
论文摘要
对于排列$π:[k] \ rightarrow [k] $,序列$ f:\ {1,2,\ cdots,n \} \ rightarrow \ Mathbb r $包含一个$ k $的$π$ -pattern,如果有一系列$ k $,如果有一系列指数$(i_1,i_1,i_1,i_2,cdots $ cdots,i_2,cdots $ __k) ($ i_1 <i_2 <\ cdots <i_k $),满足$ f(i_a)<f(i_b)$,如果$π(a)<π(b)$,for $ a,b \ in [k] $。否则,$ f $称为$π$ - free。对于$π=(1,2,\ cdots,k)$的特殊情况,它称为单调图案。 \ cite {newman2017-Testing}启动了具有单方面错误的测试$π$ - fre。他们专注于两个特定问题,测试单调排列和$(1,3,2)$置换。对于测试单调置换的问题,$(1,2,\ cdots,k)$,\ cite {ben2019finding}改进了$(\ log n)^{o(k^2)} $非自动查询的复杂性, k \ rfloor})$。此外,\ cite {ben2019optimal}提出了一种具有$ o(\ log n)$查询复杂性的自适应算法。但是,在测试$(1,3,2)$ - freeness的问题上尚未取得任何进展。在这项工作中,我们提出了一种自适应算法,用于测试$(1,3,2)$ - freeness。我们算法的查询复杂性为$ O(ε^{ - 2} \ log^4 n)$,它显着改善了$ O(ε^{ - 7} \ log^{26} n)$ - 查询自适应自适应算法\ cite {newman2017testing}。这种改进主要是通过嵌入模式中的新结构的建议来实现的。
For a permutation $π: [K]\rightarrow [K]$, a sequence $f: \{1,2,\cdots, n\}\rightarrow \mathbb R$ contains a $π$-pattern of size $K$, if there is a sequence of indices $(i_1, i_2, \cdots, i_K)$ ($i_1<i_2<\cdots<i_K$), satisfying that $f(i_a)<f(i_b)$ if $π(a)<π(b)$, for $a,b\in [K]$. Otherwise, $f$ is referred to as $π$-free. For the special case where $π= (1,2,\cdots, K)$, it is referred to as the monotone pattern. \cite{newman2017testing} initiated the study of testing $π$-freeness with one-sided error. They focused on two specific problems, testing the monotone permutations and the $(1,3,2)$ permutation. For the problem of testing monotone permutation $(1,2,\cdots,K)$, \cite{ben2019finding} improved the $(\log n)^{O(K^2)}$ non-adaptive query complexity of \cite{newman2017testing} to $O((\log n)^{\lfloor \log_{2} K\rfloor})$. Further, \cite{ben2019optimal} proposed an adaptive algorithm with $O(\log n)$ query complexity. However, no progress has yet been made on the problem of testing $(1,3,2)$-freeness. In this work, we present an adaptive algorithm for testing $(1,3,2)$-freeness. The query complexity of our algorithm is $O(ε^{-2}\log^4 n)$, which significantly improves over the $O(ε^{-7}\log^{26}n)$-query adaptive algorithm of \cite{newman2017testing}. This improvement is mainly achieved by the proposal of a new structure embedded in the patterns.