论文标题
全球注入式relu网络
Globally Injective ReLU Networks
论文作者
论文摘要
注射率在启用推理的生成模型中起着重要作用。在逆问题和用生成先验的压缩感应中,这是良好姿势的先驱。我们建立了完全连接和卷积的重层层和网络的注入性的尖锐特征。首先,通过层分析,我们表明,通过构建适当的重量矩阵,具有两个膨胀因子是必需的,足以注入性。我们表明,与IID高斯矩阵(一种常用的可拖动模型)的全局注入性需要在3.4和10.5之间更大的膨胀性。我们还表征了通过倒数的最差case Lipschitz常数反转注射网络的稳定性。然后,我们使用来自差异拓扑的参数来研究深网的注射率,并证明任何Lipschitz地图都可以通过注射式Relu网络近似。最后,使用基于随机投影的参数,我们表明端到端(而不是层次)的尺寸足以使注入性增加一倍。我们的结果为研究神经网络研究非线性逆和推理问题的研究建立了理论基础。
Injectivity plays an important role in generative models where it enables inference; in inverse problems and compressed sensing with generative priors it is a precursor to well posedness. We establish sharp characterizations of injectivity of fully-connected and convolutional ReLU layers and networks. First, through a layerwise analysis, we show that an expansivity factor of two is necessary and sufficient for injectivity by constructing appropriate weight matrices. We show that global injectivity with iid Gaussian matrices, a commonly used tractable model, requires larger expansivity between 3.4 and 10.5. We also characterize the stability of inverting an injective network via worst-case Lipschitz constants of the inverse. We then use arguments from differential topology to study injectivity of deep networks and prove that any Lipschitz map can be approximated by an injective ReLU network. Finally, using an argument based on random projections, we show that an end-to-end -- rather than layerwise -- doubling of the dimension suffices for injectivity. Our results establish a theoretical basis for the study of nonlinear inverse and inference problems using neural networks.